
Introduction

Applied as one of the most effective and economical 
brominated flame retardants (BFRs), PBDEs have been 
widely used for more than three decades in varieties of 
manufactured materials [1]. Thanks to the extraordinary 
fire retarding capability, a great deal of wealth and 

life has been saved. Since BFRs were first detected in 
environmental samples in Sweden, interests as well as 
concerns in environmental distribution, behavior and 
fate of BFRs including PBDEs have grown sharply 
[2]. Mainly for massive industrial use and no chemical 
bound between PBDEs and body material, PBDEs 
are ubiquitously detected in various environmental 
media and biological samples even human beings [3]. 
In addition to the wide distribution, the properties 
of persistence, bioaccumulation and long distance 
transportation attracted world-wide concerns. Recently, 
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Abstract
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PBDEs have been considered genotoxic, mutagenic and 
carcinogenic especially for low-brominated diphenyl 
ethers which are generated from high-brominated 
diphenyl ethers by debromination [4]. All of these 
posed detrimental threats to wildlife and human 
health. Therefore, it’s necessary to establish effective 
technological approaches to deal with or reduce the 
pollution of PBDEs. In this research, BDE-3 was 
selected as a model congener of PBDEs to study its 
aerobic biodegradation.

Biodegradation is one of the most important natural 
attenuation processes for xenobiotic and synthetic 
chemicals in environment and deemed as a safe and 
effective way to remove them from the environment. 
Many efforts have been taken to degrade PBDEs 
by applying biotechnological approaches. Among 
them, a number of microorganisms responsible for 
debromination reactions have been enriched, isolated 
and identified from sludge and sediment [5-10]. Deng 
et al. (2011) investigated Lysinibacillus fusiformis 
DB-1, an aerobic bacteria isolated from sediments, 
to degrade decabromodiphenyl ether (BDE-209) 
[6]. Shi et al. (2013) demonstrated the possible 
aerobic transformation mechanism of PBDE-209 by  
analyzing of metabolites of BDE-209 metabolized by a 
Pseudomonas aeruginosa bacterium which was isolated 
from an e-waste dismantling area [7]. Moreover, 
one microalgae isolate Chlorella SICh, isolated from 
wastewater, could reach 82-90% removal rate of a 
mixture of BDE-71 and BDE-209 (5:1) at 0.6 mg/L in 
seven days [11]. In addition to unicellular organisms, 
plants have been applied to remove PBDEs in vitro 
and in vivo [12-14]. Sun et al. (2013) used pumpkin to 
hydroponically expose to 2,2′,4,4′-tetrabromodiphenyl 
ether (BDE-47) and found the formation of 5 kinds 
of debromination products and one methoxylated 
debromination product [13]. Also, Wang et al. 
(2012) observed the debrominated, hydroxylated  
and methoxylated products in maize hydroponically 
exposed to BDE-15, -28 and -47 [12]. Compared  
with bacteria and plants, little is known about the 
degradation of PBDEs by yeast strains though the 
unicellular eukaryotes play important roles in soil 
ecosystems as well as contaminated sludge and 
wastewater.

Widely distributed in the environment, various 
yeast strains have been reported for characterizing 
the removal capability to some hazardous chemicals. 
Magnusiomyces ingens LH-F1, obtained from the sea 
mud of a harbor adjacent to an azo dyes factory, was 
found capable of decolorizing various azo dyes [15]. 
Pichia anomala, isolated from crude oil contaminated 
soil, could degrade four kinds of polycyclic aromatic 
hydrocarbons (PAHs) alone or in combination [16]. 
Moreover, diverse yeast strains have been found 
participating in industrial wastewater purification 
with concomitant xenobiotic like color substances  
[17-19], phenol- and chlorophenol-related substances 
[19-20]. Because of the structure similarity of aromatic 

chemicals to PBDEs, the potential utilization of yeast 
strains for PBDEs removal seems attractive.

In this study, the yeast strain capable of aerobic 
degradation of 4-brominated diphenyl ether (BDE-3) 
was isolated form the phyllosphere of P. tomentosa, 
and identified base on morphological properties and 
the ITS sequence analysis. The pH and NaCl tolerance 
capability, growth curves with BDE-3 concentration 
gradient and BDE-3 removal and assimilation efficiency 
were investigated.

Material and Methods

Reagents

BDE-3 (purity>98 %) used in this study was 
purchased from Tokyo Kasei Kogyo Co., Ltd. (TCL) 
and diluted with alcohol to 80 g L−1 before use. 
Biochemical reagents and solutions were of analytical 
grade or higher. 

Synthetic Bushnell Hass Mineral Salts (BHMS) 
medium contains (g/L): KH2PO4, 1; K2HPO4, 0.2; 
MgSO4-7H2O, 0.2; CaCl2, 0.02; NH4NO3, 1; NaCl, 
2; and 2 droplets of 60% FeCl3. BHMS medium 
supplemented with desired concentration of BDE-3 was 
used as BDE-3 degradation medium.

Potato Dextrose Agar (PDA) medium contains (g/L): 
Potato extract 3, glucose 20, agar 15. PDA medium was 
for culturing and screening of phenotypically different 
yeast strains.

Liquid PDA medium containing (g/L): potato 
extract 3 and glucose 20 was used for activating 
microorganisms before the growth curve establishment 
and BDE-3 removal determination analysis. All the 
culture media were adjusted to pH 6.5 and autoclaved at 
115ºC for 15 min.

Culturable Yeast Strains Isolation 

The P. tomentosa forest, aged 16, grows on West 
Campus of Agricultural University of Hebei, Baoding, 
China. The leaf material preparation and strains isolation 
were conducted following the method described by 
Zhao et al. [21]. The phyllospheric microbiota was 
subcultured for several times to obtain phenotypically 
different yeast colonies as many as possible.

Screening BDE-3 Utilization Yeast Strains

Prior to the screening, obtained culturable yeast 
strains need to be activated by incubating in liquid 
PDA medium. The initial yeast culture turbidity in 
liquid PDA was modulated to the optical density at  
660 nm (OD660) of 0.100, and the suspension culutre was 
incubated on a rotary shaker at 30ºC and 150 rpm for  
24 h. Cells were harvested by centrifugation (3000 rpm, 
10 min, 4ºC), and then washed with BHMS medium 
(3000 rpm, 10 min, 4ºC) three times. The pellet of 
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each strain was resuspend in BHMS medium and used 
for further investigations including the growth curve 
establishment and removal efficiency determination.  
50 mL activated suspension containing 20 mg L-1 
BDE-3 was incubated on a rotary shaker at 30ºC and 
200 rpm. The OD660 was measured every 12h for the 
establishment of their growth curves using UV–visible 
spectrophotometer. The strains capable of growing 
on BDE-3 as sole source of carbon and energy were 
selected via screening 5 days later.

Strain Identification 

The morphological properties were investigated 
to taxonomically characterize the BDE-3 degrading 
yeast strains. For the molecular identification, 
Internal Transcribed Spacer (ITS) sequences of 
obtained yeast were amplified by colony PCR. PCR 
amplification was performed using the general ITS 
primers 1 and 4 [22]. The sequence (5’-3’) of primer 
1 and 4 were TCCGTAGGTGAACCTGCGG and 
TCCTCCGCTTATTGATATGC, respectively. The 
amplification reaction was performed in a 50 µl reaction 
system containing 1×PCR buffer, 0.2 mM dNTPs,  
1 µM each of forward and reverse primer, 0.4 mM 
MgCl2 and 2U Tag DNA polymerase. The temperature 
profile was set as follows: on cycle of 5 min at 95ºC, 
followed by 35 cycles of 45 sec at 95ºC, 45 sec at 52ºC, 
and 60 sec at 72ºC, and one cycle of 10 min at 72ºC.  
The amplification products were subjected to 
electrophoresis in 1% agarose gel. Sequencing was 
performed after ITS DNA fragments extraction. The 
obtained ITS sequences were compared and aligned 
with sequences deposited in GenBank database using 
the BLAST program to compare similarity to other 
yeast ITS sequences. The ITS sequence of degrading 
yeasts and related sequences obtained from GenBank 
database were aligned by Clustal X (1.8). The aligned 
data was used to construct a phylogenetic tree using 
Neighbor-joining method by MEGA (Version 5.1) with 
1000 bootstrap replicates. 

Growth Curve Establishment

Growth curve of activated BDE-3 degrading 
yeast strain was conducted in 150 ml Erlenmeyer 
flask containing 30 ml BHMS medium supplied with 
different concentrations of BDE-3 (0, 100, 200, 300, 400,  
500 mg L-1). The treatment group without adding BDE-3 
was set as blank control. Treatments of BHMS medium 
supplied with different concentrations of BDE-3 and the 
one of the same volume of liquid PDA medium were 
set to to analyze the effects of nutritional condition on 
the yeast growth. The growth curves of all treatment 
groups were established by OD660 measurement. The 
incubation condition was on a rotary shaker at 30ºC and 
200 rpm. After every OD660 measurement, the batch of 
used suspensions were removed. Every treatment was 
set triplicate.

Environmental Factors Tolerance Range 
Determination

Activated BDE-3 degrading yeast strains cultured 
in BHMS with initial suspension OD660 of 0.100 and 
augmented with 300 mg L-1 BDE-3 were conducted 
to determine the tolerance range of pH and NaCl. The 
range of pH was set as 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 
and the NaCl concentration (mass concentration) was 
set as 0, 0.5, 1, 2, 3, 4, 5%. Every treatment was set 
triplicate. The incubation condition was same to the 
section 2.5. The OD660 of suspension was measured 
after 5 days incubation.

BDE-3 Removal Efficiency Determination 

Activated 30 mL yeast strain BHMS suspension 
in 150 mL Erlenmeyer flask supplied with 40 mg L-1 
BDE-3 was set as removal treatment group. The thermal 
inactivation treatment group of 30 mL yeast strain 
BHMS suspension added 40 mg L-1 BDE-3 was set 
to determine the assimilation and adsorption effects 
of inactive yeast cells. The BHMS medium supplied 
with 40 mg L-1 BDE-3 was set as negative control to 
investigate the potential volatilization or non-biological 
degradation capacity. Every treatment was biological 
triplicate. The incubation condition was same to the 
section 2.5. After 72 h incubation, 10 mL n-hexane was 
added to incubation suspension. Incubation suspensions 
were treated on a rotary shaker at 20ºC and 150 rpm 
for 1 h. Then, 1 mL supernate was extracted from the 
suspensions for removal efficiency analysis by applying 
gas chromatograph (Agilent Technologies 6890N) 
coupled with a micro-electron capture detector (Agilent 
Technologies, USA; GC-μECD). The capillary column, 
thermal settings and other procedure details were 
performed following the method described by Zhao et 
al. [21]. 

Statistical Analysis

Origin 8.5 was performed to form figures as well as 
calculate the mean value and standard deviation (SD) 
for replicates. 

Results and Discussion

Culturable Strains Isolation, Screening 
and Identification 

After several times of leaves sampling and strains 
isolation, a variety of culturable microorganisms on 
PDA medium were obtained. Through screening, one 
yeast strain with capability of aerobically metabolizing 
BDE-3 as sole carbon and energy source was acquired. 
The yeast colony was mucoid creamy whitish with 
a diameter of approximate 4 μm on PDA medium  
(Fig. 1). Yeast cells showed circular with an entire 
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margin. The molecular identification of the yeast strain 
was conducted by amplifying and sequencing the ITS 
fragment. Through aligning with sequences deposited in 
GenBank database, the obtained yeast showed highest 
similarity to Wickerhamomyces anomalus strain. Based 
on the morphological properties and the ITS sequence 
analysis, the isolated BDE-3 degrading yeast strain 
was identified as W. anomalus, and designated Y1. The 
phylogenic tree was illustrated in Fig. 2. The accession 
number of Y1 ITS sequence is MG757836.  

Growth Curve Establishment 

Activated yeast Y1 suspension supplied with  
BDE-3 (concentration gradient of 0, 100, 200, 300, 
400, 500 mg L-1) was set to determine the endurance 
capability with initial optical density at 660 nm (OD660)  
of 0.100. As shown in the Fig. 3, the suspension OD660 of 

blank control group declined over time which illustrated 
no significant nutrition was residual after activating and 
washing procedure. The suspension OD660 increased 
along with the BDE-3 concentration from 100 to  
500 mg L-1, revealing high BDE-3 concentration up 
to 500 mg L-1 did not limit the quantitative growth of 
strain Y1. The highest optical density at 660 nm of 
most treatment groups (4/5) reached at the second day, 
then slowly inclined. The highest OD660 of 500 mg/L 
BDE-3 treatment group came up to 0.450 at the 2nd day. 
The nutrition level effect of liquid PDA medium and 
BDE-3  in BHMS on yeast biomass was conducted and 
it could be seen a huge suspension density difference 
between the two media (Fig. 3), where Y1 in liquid 
PDA reached the summit of  suspension OD660 at 3rd day 
and almost came up to 2.000. 

Environmental Factors Tolerance Range 
Determination

As shown in Fig. 4 (a-b), BDE-3 degrading yeast Y1 
could grow on 300 mg L-1 BDE-3 in BHMS medium in 
pH range of 4.0 to 8.0 and up to 3% NaCl, respectively. 
If zoom in, the results showed that the yeast Y1 cells 
grew better at pH 6.0 than 7.0, illustrating the yeast was 
mildly acidophilic. And yeast Y1 grew best in BHMS 
medium when no extra NaCl was added but could still 
survive at 3% NaCl, proving the yeast possessed strong 
salt tolerance capability.

Removal Efficiency Determination

The removal efficiency of BDE-3 degrading yeast 
Y1 was conducted by aerobically removing 40 mg L-1

BDE-3 with initial suspension OD660 of 0.100. 
The results showed that no significant BDE-3 loss 
appeared in negative control group, thus ruling out the 

Fig. 1. The colony morphology of isolated 4-BDE degrading 
yeast strain.

Fig. 2. The phylogentic tree of yeast Y1 based on ITS sequence. The black point represents the isolated phyllospheric yeast Y1, the 9 
alignment strains are shown by accession number and name of species. 
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possibility of significant volatilization or non-biological 
degradation of BDE-3. For biological removal treatment 
group, Y1 could transform 83.58±2.60 % of 40 mg L-1 
BDE-3 in 3-day incubation. For thermally inactivated 
Y1 suspension, inactive Y1 cells still could absorb and 
assimilate 41.13±4.95 % of 40 mg L-1 BDE-3 (Table. 1).   

The BDE-3 degrading yeast Y1 was originally 
isolated from the phyllosphere of P. tomentosa forest, 
where the survival environment is not significantly 
or continuously contaminated by PBDEs or other 
organic pollutants. For acquiring microbial resource for 
potential application to degrading hazardous materials, 
the contaminated areas of corresponding pollutant were 
the preferred investigation sites, where these sites could 
domesticate microorganisms with outstanding adaptive 
mechanisms and degrading properties. Most researches 
involved acquiring desired PBDEs-degrading strains 
were focused on sites of PBDEs contaminated field 
[8, 23, 24]. The finding of yeast Y1, with the specific 
ecological niche on phyllosphere, broadens the 
existing range of PBDEs degrading microorganisms, 
and as unicellular fungi, strain Y1 is the first report 
with property of biodegrading PBDEs. Phyllosphere, 
the aerial above-ground plant part, is a high-density 
microbial attachment area where more versatile 
noxious-substance degrading microorganisms to be 
further explored [25-26].

The addition of carbon and energy source to 
culture environment was needed necessarily for partial 
PBDEs degrading strains to maintain efficient removal 
rate [7, 27]. Moreover, the addition of extra energy 
materials could be beneficial to promoting cell surface 
hydrophobicity, thus enhancing the removal efficiency 
[23, 24, 28]. In the present research, the obtained yeast 
Y1 could grow on BDE-3 as sole carbon and energy 
source, which is great favor for engineering application: 
the utilization of yeast Y1 could reduce the economical 

Fig. 4. Yeast Y1 suspension turbidity in the range of pH a) and 
NaCl concentration b) after 5d incubation. The baseline of 0.10 
means the initial suspension turbidity 

Fig. 3. Y1 growth curves in 4-BDE BHMS and liquid PDA media. The baseline of 0.1 means the initial suspension turbidity.  
The character d means day. The baseline of 0.1 means the initial suspension turbidity. 

a)
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and environmental burden caused by adding artificial 
co-metabolites or surfactants, and thus eliminate the 
possible adverse consequence if the additive materials 
are poisonous like toluene or other compounds 
possessing benzene ring structure.

In this paper, the aerobic transformation efficiency  
of yeast Y1 reached 83.58±2.60 % of 40 mg L-1 BDE-3 
in 3 days incubation, which is fairly or even more 
effective when comparing with the previous reports. 
For instance, Rhodococcus sp. RR1 aerobically 
transformed 20% of 17 ug L-1 BDE-3 within 72 hours 
[29]. Pseudomonas putida degraded 42.5% of 2 mg L-1

BDE-3 after 10 days incubation [10]. Two kinds of 
anaerobic sludge removed 77% and 31% of 5 mg L-1 
BDE-3 respectively over 16 days [30]. Sphingomonas 
sp. PH-07 could degrade 23% of 1 g L-1 BDE-3 within 
8 days [5]. 

Conclusions

The yeast strain with the ability to degrade 
4-brominated diphenyl ether (BDE-3) was isolated 
from the phyllosphere of P. tomentosa at a subastral 
ecological niche without any contamination of 
synthetic chemicals. The strain was identified as 
Wickerhamomyces anomalus and designated Y1 whose 
pH tolerance rang was 4.0 to 8.0, and could grow in the 
BHSM medium adding 3% NaCl. The yeast Y1 could 
remove 83.58±2.60 % of 40 mg L-1 BDE-3 under an 
aerobic incubation condition within 3 days. The findings 
are expected to inspire the integral phytoremediation 
combining plant and associated above-ground 
microorganisms for gaseous PBDEs removal. 
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