PL EN
MICROALGAE BIOMASS PRODUCTION BASED ON WASTEWATER FROM DAIRY INDUSTRY
 
More details
Hide details
1
Katedra Inżynierii Środowiska, Wydział Nauk o Środowisku, Uniwersytet Warmińsko-Mazurski w Olsztynie, ul. Warszawska 117, 10-720 Olsztyn
 
 
Publication date: 2016-05-01
 
 
Inż. Ekolog. 2016; 47:54-59
 
KEYWORDS
ABSTRACT
The goal of this study was to determine the feasibility of culturing high-oil algae biomass based on wastewater from dairy processing plants. The experiments were conducted in laboratory scale with tubular photobioreactor using. The best technological properties were demonstrated for eluates from an anaerobic reactor treating dairy wastewater. The use of a substrate of this type yielded algae biomass concentration at a level of 3490 mg d.m./dm3, with the mean rate of algae biomass growth at 176 mg d.m./dm3∙d. The mean content of oil in the proliferated biomass of algae approximated 20%.
 
REFERENCES (15)
1.
Chiu S.-Y., Kao C.-Y., Tsai M.-T., Ong S.-C., Chen C.-H., Lin C.-S. 2009. Lipid accumulation and CO2 utilization of Nanochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833–841.
 
2.
De Morais M.G., Costa J.A.V. 2007. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management, 48(7), 2169–2173.
 
3.
Dębowski M., Zieliński M., Krzemieniewski M. 2009. Wpływ składu jakościowego substratów oraz obciążenia komory ładunkiem związków organicznych na skład i ilość uzyskiwanego biogazu. Roczniki Ochrony Środowiska, 11, 1179–1190.
 
4.
Grobbelaar J.U. 2000. Physiological and technological considerations for optimising mass algal cultures. J. Appl. Phycol., 12, 201–206.
 
5.
Hu Q., Sommerfeld M., Jarvis E., Ghirardi M.L., Posewitz M.C., Seibert M. 2008. Microalgal triacyglycerols as feedstocks for biofuel production. The Plant Journal, 54, 621–639.
 
6.
Li Y., Horsman M., Wu N., Lan C., Dubois-Calero N. 2008. Biofuels from microalgae. Biotechnology Progress, 24(4), 815–820.
 
7.
Meng X., Yang J., Xu X., Zhang L., Nie Q., Xian M. 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1–5.
 
8.
Mùnoz R., Kollner C., Guieysse B., Mattiasson B. 2004. Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor. Biotechnol. Bioeng., 87(6), 797–803.
 
9.
Oswald W.J. 2003. My sixty years in applied algology. J. Appl. Phycol., 15, 99–106.
 
10.
Patil V., Tran K.-Q., Giselrad H.R., 2008. Towards sustainable production of biofuels from microalgae. International Journal of Molecular Sciences, 9(7), 1188–1195.
 
11.
Pienkos P., Darzins A. 2009. The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod. Biorefin., 3(4), 431–440.
 
12.
Qin J. 2005. Bio-hydrocarbons from algae-impacts of temperature, light and salinity on algae growth. Barton, Australia: Rural Industries Research and Development Corporation.
 
13.
Weldy C.S., Huesemann M. 2007. Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity. US Department of Energy Journal of Undergraduate Research, 7(1), 115–122.
 
14.
Widjaja A., Chien C.-C., Ju Y.-H. 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13–20.
 
15.
Wu W.-T., Hsieh C.-H. 2008. Cultivation of microalgae for optimal oil production. Journal of Biotechnology, 136(1), 521–1521.
 
Journals System - logo
Scroll to top